Seventh Grade Students' Meanings of Division with Whole Numbers, Fractions, \& Unknowns

Amy J. Hackenberg, ahackenb@indiana.edu
Robin Jones, robijone@indiana.edu
Rebecca Borowski, rborowsk@indiana.edu
Sukanya (Pai) Suksak, ssuksak@indiana.edu

This material is based in part on work supported by the National Science Foundation (grant no. DRL-I252575)

IDR²eAM Project: Investigating Differentiated Instruction and Relationships between Rational Number Knowledge and Algebraic Reasoning in Middle School

- Study:

- how to differentiate instruction for cognitively diverse middle school students
- how students' rational number knowledge and algebraic reasoning are related
- Phase I (Yrs I \& 2): Conducted three 18-episode after school design experiments with 6-9 cognitively diverse middle school students [ages 12-14]

Purpose of talk

- To communicate about students' meanings of division with fractions and unknowns in the $3^{\text {rd }}$ of three design experiments
- How did students think about division in representing multiplicative relationships between unknowns?

Algebraic Reasoning from a Quantitative Perspective

- Unknowns are potential measurements of quantities.

Timeline

Whole number relationships between unknowns

- Corn Stalk Tomato Plant Heights Problem. A tomato plant and corn stalk are growing in the garden, each of unknown height.

The height of the corn stalk measured in inches is 5 times the height of the tomato plant measured in inches.

- q = height of corn stalk
- $\mathrm{c}=$ height of tomato plant
- $5 \mathrm{c}=\mathrm{q}$ $q \div c=5$
- $q \div 5=c$

Fractional relationships between unknowns

- Tree Heights Problem. A crabapple tree and a maple tree are growing next to West Middle School. Each tree's height is unknown.

The principal knows that the crabapple tree's height measured in feet is $2 / 5$ of the maple tree's height measured in feet.

- m = maple tree height
- c = crab. tree height
- $\mathrm{m} \div \mathrm{c}=$?
- $m \div c=21 / 2$
- $m \div c=5 / 2$
maple tree hight

Heather \& Symone

Maple tree is unknown

AH: Do you have a sense of how many times this crabapple tree fits into that maple tree height?

S: $21 / 2$ times. Because there's I, and then this is cut in half right here like that.

Milo

- Initial equations:
- m•2/5 = c
- $c \cdot 0.4=m$
- Tchr: Recall $\mathrm{C} \div \mathrm{T}=5$ discussion?
- Milo: Ah!
- Identified 2.5 with questioning
- New equation: c • $2.5=$ m
- And then after 5 min of computing with $c=4, m=10$:
 $\mathrm{m} \div 2.5=\mathrm{c}$

Emmett \& Yujeong - a sunflower's height is $3 / 5$

 of a fern's height

- E: There's 5 unknown units [fern]. Now this is the 3 , the base, which is equal to the sunflower, which is 3 . So that's $3,4,5$. That's 5 and this is the base of 3 . So that's $5 / 3$ rds.
- Y : One unknown unit is $I / 3$ of a sunflower.
- E: And I/5 of the fern.
- E :That's perfect. It's the best math equation ever.

Students' Meanings/Uses of Division

- Heather \& Symone:
- M $\div \mathrm{C}(\mathrm{H})$
- Measuring one quantity with the other (S)
- Milo
- Measuring one quantity with the other made sense with prompting, but he did not come up with $M \div C$ $=2 \mathrm{I} / 2$
- No multiplicative inverses (no reciprocal reasoning)
- Emmett \& Yujeong
- From: Multiply by reciprocal "because I learned that"
- To: Multiplicative inverses justified based on relationships with quantities

Danke!

- With BIG thanks to others on the IDR²eAM project team: Fetiye Aydeniz, Mark Creager,Ayfer Eker, Serife Sevis
- What IDR²eAM stands for:

Investigating Differentiated Instruction and Relationships between Rational Number Knowledge and Algebraic Reasoning in Middle School

- http://www.indiana.edu/~idream/

