
BBP (block-based programming) toward TBP (text-based programming)
Leon Tynes and Kyungbin Kwon

Title: Guide students toward text-based programming through pseudocode activities

Summary: When students understand pseudocode in block-based programming
exercises and projects, they will have an easier experience comprehending functions
and syntax in text-based programming. This approach will make students’ thinking
visual for teachers’ formative assessment.

Background:
“Pseudocode is a kind of structured english for describing algorithms. It allows the
designer to focus on the logic of the algorithm without being distracted by details of
language syntax… It describe[s] the entire logic of the algorithm so that implementation
becomes a rote mechanical task of translating line by line into source code” (California
Polytechnic State University, n.d.). The process of decoding block-based programs to
pseudocode will strengthen student understanding between specific block structure in
Computational Thinking (CT) concepts, as well as emphasize how important
pseudocode is to the effective development of program code in either format. However,
the methodology of writing pseudocode and decoding block-based programs is scarce
in coding lessons and activities.

There is a lack of explanation (learning experience) making connection between two
different modes of programming. Students often feel huge gaps between block-based
programs and text-based programs in K-12 education. The basis of student frustrations
with text-based programs commonly stem from “pattern recognition and reproduction”
directly related to syntax (Taggart, n.d.). Pseudocode instruction is not emphasized in
K-12 classrooms and third party curriculum providers, and there are no decoding
exercises for students to develop and understanding of the underlying text based code
in block-based programming platforms. Therefore, students are not developing fluency
in writing or understanding text based coding languages based on their block-based
programming learning experience.

There are programs, such as Droplet, that reveal text-based code from block-based
programming platforms. However, without specific lessons centered around
pseudocode and the introduction of text-based programming syntax, students still have
difficulty making the correlation between the function and programming concepts
between the two platforms. We suggest that using pseudocode can be a stepping stone
to understanding common principles (CT concepts) shared in them.

Research
Participants: This study (Kwon, 2017) focused on preservice teachers who have
minimum learning experience in programming. Target students can navigate
block-based program learning environments and have a basic conceptual
understanding of CT concepts. They know the basic structure of text-based program
syntax and can read simple codes, but they are not yet proficient in developing
text-based programs.

Context of learning: The main goal of the course was to introduce computational
thinking and to teach programming concepts. In order to emphasize the importance of
conceptual understanding of programming, the instructor provided problems that
students could solve without a computer, and asked them to develop pseudocode of the
solutions. The researcher aimed to identify students’ misconceptions of programming by
analyzing their pseudocode.

Findings
Students’ pseudocode that illustrated solutions of given problems revealed their mental
models utilizing the concepts of programming and computational thinking skills.
Findings suggested that students (1) liked to use a specific case to understand
problem-solving process rather than consider a general solution at first; (2) omitted
necessary specifications based on a false assumption that computers would be able to
follow the instructions that were quite ambiguous; (3) did not express their intention that
computer could execute.

So what?
Considering that pseudocode can reveal students’ conceptual understanding of
programming, teachers will be able to understand students’ CT concepts through their
pseudocodes and provide tailored guide based on that. By doing so, the study
suggests pedagogical implementations that would make a smooth transition from
block-based programming to text-based programming. Introducing more pseudocode
writing opportunities and providing necessary scaffold to guide them in learning CT
concepts are necessary (Odisho, Aziz, and Giacaman, 2016). In an effective CS
curriculum or course, students need to have text-based programming experience based
on core CT concepts that relate back to block-based programming. Coding platforms
such as Microsoft MakeCode (with Wonder Workshop hardware devices) provide
students opportunities to transition from BBP to Javascript within the same activity and
learning objective. The Raspberry Pi hardware devices work with the Scratch BBP in its
operating system, while providing opportunities to transition students to the Python TBP.

In both of these examples, the BBP becomes the pseudocode for students to effectively
modify, then write accurate text-based code. Teachers must intentionally evaluate
educational coding platforms with the development of pseudocode as an essential part
of programming that will allow students to perform in either platform with an
understanding of core concepts.

Reference:
California Polytechnic State University. (n.d.). Pseudocode standard. Retrieved from
http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

Kwon, K. (2017). Novice programmer's misconception of programming reflected on
problem-solving plans. International Journal of Computer Science Education in Schools,
1(4), 14-24. doi:10.21585/ijcses.v1i4.19

Powers K, Ecott S, Hirshfield L M. 2007. Through the looking glass: teaching CS0 with
Alice. SIGCSE Bull. 39, 1 (March 2007), 213-217.

Odisho, O. , Aziz, M. and Giacaman, N. (2016), Teaching and learning data structure
concepts via Visual Kinesthetic Pseudocode with the aid of a constructively aligned app.
Comput Appl Eng Educ, 24, 926-933. doi:10.1002/cae.21768

Taggart, M. (n.d.). Bridging the Scratch Gap: From Blocks to Text Programming.
Retrieved from
https://theforeverstudent.com/bridging-the-scratch-gap-from-blocks-to-text-programming
-7b3db8356000

Zhen Xu, Albert D. Ritzhaupt, Fengchun Tian & Karthikeyan Umapathy (2019)
Block-based versus text-based programming environments on novice student learning
outcomes: a meta-analysis study, Computer Science Education, DOI:
10.1080/08993408.2019.1565233

http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html
https://doi.org/10.1002/cae.21768
https://doi.org/10.1080/08993408.2019.1565233

